Hydrogen water or hydrogen-rich water (also called hydrogen-enriched water) simply means normal water (H2O) that contains dissolved hydrogen gas (H2). For example, there are carbonated waters or beverages (soda pop), which contain dissolved carbon dioxide gas (CO2), or oxygen water, which contains dissolved oxygen gas (O2). Similarly, you can have water that contains dissolved hydrogen gas.
Think of it this way: you can make hydrogen water by taking a tank of hydrogen gas (just like tanks of helium used to fill balloons or tanks of oxygen gas used in hospitals), and bubbling it into a glass of water. There are also many other methods to make hydrogen water, but this may help you better understand what hydrogen water is. It is simply water that contains dissolvedhydrogen gas.
Yes. Hydrogen gas has been shown to be very safe at concentrations hundreds of times higher than what is being used for therapy. Here are a few examples: Hydrogen’s safety was first shown in the late 1800s, where hydrogen gas was used to locate gunshot wounds in the intestines. The reports showed that there were never any toxic effects or irritation to even the most sensitive tissues. Another good example of its safety is that hydrogen gas has been used in deep sea diving since 1943 (at very high concentrations) to prevent decompression sickness. Studies have shown no toxic effects from hydrogen when at very high levels and pressures of 98.87% H2 and 1.26% O2 at 19.1 atm. Furthermore, hydrogen gas is natural to the body because after a fiber-rich meal, our gut bacteria can produce liters of hydrogen on a daily basis (which is yet another benefit from eating fruits and vegetables). In short, hydrogen gas is very natural to our bodies, not like a foreign or alien substance that can only be synthesized in a chemistry lab.
The earliest account of hydrogen gas having medicinal properties was in 1798, for things like inflammation. But, it didn’t become a popular topic among scientists until 2007, when an article about the benefits of hydrogen was published in the prestigious journal of Nature Medicine by Dr. Ohta’s group.
Alkaline water is not a buffer and has low alkalinity. As such, it cannot neutralize very much acid. Many people have seen that just a small amount of soda can easily lower the pH of a gallon of alkaline water. To help put this into perspective, consider that 1 tsp of baking soda (sodium bicarbonate) can neutralize the same amount of acid as 10,000 liters of alkaline water at a pH of 10. This is a primary reason why medical professionals have been skeptical about “alkaline ionized water”. It simply wasn’t known that the benefit of this water is attributed to the dissolved hydrogen gas until around 2007.
Healthy blood pH varies between 7.35 to 7.45. Blood pH is tightly regulated. In physiology, if someone has a blood pH of 7.1 they are said to have acidosis even though 7.1 is actually alkaline according to the pH scale. Very rarely do people ever get truly acidic blood (pH<7.0). If the blood pH drops below 7, the body will not survive very long. Therefore, virtually every sick person actually has an alkaline blood pH even though some may have acidosis. Similarly, some diseases can actually cause alkalosis (elevated blood pH). It is the disease that causes the changes in blood pH, as opposed to the changes in blood pH causing the disease. Of course, a low blood pH can cause serious damage to the body and needs to be quickly corrected.
The three main systems the body uses to maintain normal blood pH levels are:
When acid is introduced into or produced by the body, it is quickly neutralized by the blood’s buffering components. The most important buffer is the bicarbonate/carbonic acid mechanism. Carbon dioxide (CO2) dissolves in the blood to form carbonic acid (H2CO3), which then forms bicarbonate (HCO3–, alkaline buffer) and the hydrogen ion (H+). This is according to the equation CO2 + H2O --> H2CO3 --> HCO3– + H+. This makes things very simple, because if the blood pH is too low (too many H+ ions), then we simply exhale out more CO2 via the lungs. The removal of CO2 causes the equation above to shift to the left, reducing the amount of H+ ions, which increases the blood pH. This is why hyperventilation (rapid breathing) can result in alkalosis (high blood pH) due to the excess removal of CO2. Alternatively, holding your breath can result in a lower pH because more CO2 is dissolving in the blood, which shifts the equation to the right leading to more H+ ions. CO2 is simply a normal byproduct of metabolism. In fact, virtually all the food we eat is broken down to CO2. Importantly, the primary stimulus for breathing is not the need for oxygen, but the need to remove CO2 so that the H+ ion concentration doesn’t increase and lower blood pH. Generally, under relaxed conditions, there is enough oxygen in one breath of air to sustain the body for about 1 minute, yet we breath around 12 times per minute to remove the CO2. Healthy people only use about 5% of the oxygen inhaled per breath. People with lung diseases often require additional oxygen because they are unable to inhale enough. The inability to inhale and exhale also can lead to changes in blood pH because of the inability to remove CO2, possibly resulting in respiratory acidosis. For additional information see: